Сила отталкивания. Сила трения покоя (сила сопротивления). Силы отталкивания, действующие между атомами и молекулами на малых расстояниях

) и его команда из школы инжиниринга и прикладных наук Йельского университета экспериментально выявили отталкивающее действие света. Тем самым они завершили построение картины биполярного взаимодействия близкорасположенных наноразмерных волноводов, по которым проходят пучки излучения с определёнными параметрами.

В прошлом году Тан и его коллеги скомбинировали наномеханику и нанофотонику, впервые построив устройство, в котором для контроля положения компонентов применялась боковая (перпендикулярная лучу) сила воздействия со стороны света.

Это взаимодействие электромагнитных волн и оптической системы не следует путать с давно известным фронтальным давлением света, падающего на поверхность того или иного тела.

Существование боковых сил (также называемых оптическими связывающими силами — optical binding force) теоретики предсказывали с 2005 года, причём предполагалось, что эти силы могут быть как отталкивающими, так и притягивающими. Последние как раз удалось обнаружить в прошлом году.

А вот теперь та же группа исследователей построила микроскопическое устройство, в котором добилась проявления как силы притяжения, так и силы отталкивания между соседними световыми пучками, пойманными внутри волноводов. Причём физики нашли способ регулировать эти силы по своему желанию.

a – так выглядит новое устройство, созданное Таном; b – сердцевина схемы при более крупном увеличении (на левом кадре она обведена красной рамкой) (фото Mo Li et al.).

«Это завершает картину, — заявил Тан. — Мы показали, что действительно существует двухполярная сила света с притягивающей и отталкивающей компонентами». Физики поясняют, что существование оптических связывающих сил увязано с уравнениями Максвелла , а по физической сути данные силы являются родственниками силы Казимира , которая появляется из-за квантовых флуктуаций в вакууме.

Для проявления этой новой силы учёные разделили луч инфракрасного лазера на два отдельных потока, проходящих по кремниевым нановолноводам, отличным по длине. После завершения такой петли эти волноводы подходили вплотную друг к другу (расстояние в ряде опытов менялось). В этот момент два бегущих рядом пучка оказывались со смещёнными друг относительно друга фазами.

В зависимости от величины этого сдвига, выяснили экспериментаторы, и меняется (по величине и знаку) боковая сила взаимодействия этих пучков, которую они передают на удерживающие их волноводы. И хотя сила была мала (порядка нескольких пиконьютонов), её удалось измерить и выявить закономерности: открытая сила зависела и от сдвига фаз, и от мощности излучения, и от расстояния между нановолноводами.


a – схема двух волноводов, подвешенных над полостью (чтобы они могли изгибаться под действием света); b – зависимость силы (пН/мкм.мВт) от расстояния между волноводами (нм) и сдвигом фаз; c – амплитуда и знак боковой силы в зависимости от разности фаз при расстоянии между световыми лучами в 400 нм; d – картина распределения притягивающих и отталкивающих сил в зависимости от разности фаз двух лучей и дистанции между волноводами. В последних двух случаях шкалы силы также размечены в пН/мкм.мВт. На всех графиках и рисунках красным отмечено действие сил притяжения, синим – отталкивания (иллюстрации Mo Li et al.).

«Силы взаимодействия света интригуют, поскольку работают противоположным образом по сравнению с заряженными телами, — говорит один из авторов эксперимента Вольфрам Пернайс (Wolfram Pernice). — Противоположные заряды притягивают друг друга, тогда как сдвинутые по фазе световые лучи отталкиваются».

Команда Тана полагает, что придуманная ими технология когда-нибудь пригодится в создании быстрых, компактных и экономичных телекоммуникационных устройств. В таких схемах компоненты могли бы взаимодействовать между собой при помощи пойманного в волноводы света, что помогло бы кардинально сократить число проводников.

Результаты работы её авторы изложили в статье в журнале Nature Photonics (её можно прочитать на сервере arXiv.org).

Квантовая механика предсказывает, что на расстояниях порядка нанометра между телами должна наблюдаться сила притяжения. Такое явление называют эффектом Казимира, и его существование подтверждено экспериментально. Однако при определенных условиях притяжение тел на таких масштабах может смениться их отталкиванием. В этом случае наблюдается обобщенный эффект Казимира, или эффект Казимира-Лифшица. Группе американских ученых впервые удалось измерить силу такого отталкивания между телами на больших (по меркам наномира) расстояниях, и полученные данные хорошо согласуется с теорией. Результаты эксперимента, вероятно, могут быть использованы для создания нано- и микромеханизмов с очень маленькой силой трения между деталями.

Оказывается, левитация объектов возможна не только благодаря сверхпроводимости (а точнее, идеальному диамагнетизму сверхпроводников, или эффекту Мейсснера), но и вследствие сугубо квантовых эффектов. Обложку одного из последних выпусков журнала Nature украшает рисунок, на котором изображен золотой шарик, зависший над кремниевой плоскостью, и такой же шарик, но уже «прилипший» к плоскости из золота (см. рис. 1). «Квантовая левитация» — гласит подпись к рисунку, а посвящен он статье американских ученых Measured long-range repulsive Casimir-Lifshitz forces (в открытом доступе статью можно посмотреть , PDF, 248 Кб). Интересно, что один из авторов этой статьи — Федерико Капассо, руководитель группы, которая занималась разработкой терагерцевого лазера, работающего при комнатной температуре (читатели «Элементов» с ним знакомы по заметке Терагерцевый лазер заработал при комнатной температуре).

И хотя словосочетание «квантовая левитация» звучит довольно устрашающе, разобраться в этом явлении не так уж и сложно. В основе «квантовой левитации» лежит эффект Казимира (см. также ), предсказанный уже более 60 лет назад голландским физиком-теоретиком Хендриком Казимиром . («Элементы» уже писали об эффекте Казимира, см.: Обнаружена ошибка в расчетах эффекта Казимира для микромеханических устройств , 28.12.2005; Эффект Казимира не может приводить к расталкиванию симметричных тел , 24.10.2006).

Изучая коллоидные растворы , Казимир пришел к выводу, что между двумя очень близко расположенными параллельными гладкими плоскостями должна возникать сила притяжения, обусловленная только квантовыми эффектами в вакууме. Под вакуумом здесь имеется в виду не пустота, где абсолютно ничего нет, а «океан» постоянно рождающихся и исчезающих виртуальных частиц, в частности фотонов электромагнитного поля. Эти частицы, хоть и виртуальные, но давление на гладкие параллельные поверхности оказывают. Так вот, выяснилось, что чем ближе расположены эти поверхности, тем меньше в зазоре между ними рождается виртуальных фотонов. Извне рождение фотонов ничем не ограничено. Получается, что количество фотонов снаружи больше, чем количество фотонов между поверхностями. Из-за такого вот неравенства давлений в итоге и получаем силу притяжения.

Казимир показал, что при нулевой температуре возникающая сила притяжения прямо пропорциональна площади взаимодействующих плоскостей и обратно пропорциональна четвертой степени расстояния между ними (гравитация и электростатическое взаимодействие убывают с квадратом расстояния). И всё. Больше в формулу казимировского притяжения, за исключением фундаментальных констант (постоянная Планка и скорость света), никаких других величин не входит.

Насколько значительна данная сила? Можно рассчитать, что две пластины, расстояние между которыми составляет 10 нм, благодаря эффекту Казимира будут создавать давление, сравнимое с атмосферным. Но, увеличив расстояние между объектами в 10 раз, получим ослабление силы притяжения в 10 000 раз. Казимировское притяжение проявляется лишь в нанометровых масштабах, и при конструировании различных нано- и микромеханических устройств оно весьма нежелательно (из-за эффекта Казимира детали будут «слипаться»).

Спустя 8 лет после открытия данного явления Евгений Лифшиц выяснил, что эффект Казимира на самом деле является всего лишь проявлением ван-дер-ваальсовых, или межмолекулярных , сил, и, более того, если зазор меду поверхностями заполнить специально подобранным веществом, то притяжение между поверхностями может смениться отталкиванием. Такое обобщение эффекта Казимира получило название «эффект Казимира-Лифшица».

Качественно переход от притяжения к отталкиванию двух тел выглядит так. Предположим, что казимировское взаимодействие поверхностей с диэлектрической проницаемостью ε 1 и ε 2 происходит не в вакууме (который тоже, в принципе, можно считать диэлектриком, но с проницаемостью, равной 1), а в среде с проницаемостью ε 3 . Если выражение -(ε 1 - ε 3)(ε 2 - ε 3) меньше нуля, то наблюдаем притяжение между поверхностями. В противном случае, будет иметь место отталкивание. Такая ситуация реализуется, например, когда выполняется соотношение ε 1 > ε 3 > ε 2 .

Экспериментальное подтверждение эффекта Казимира проводилось неоднократно — сила притяжения между телами согласуется с теорией практически на 100% (в системе с двумя параллельными плоскостями, а также шаром и плоскостью). Однако публикаций с экспериментальным подтверждением эффекта Казимира-Лифшица до настоящего времени не появлялось. А потому обсуждаемая работа в Nature является первой по экспериментальной проверке такого эффекта (по крайней мере, авторы осторожно утверждают, что не знают подобных статей).

Итак, чтобы понять, насколько теория эффекта Казимира-Лифшица согласуется с экспериментом, ученые изучали вначале взаимодействие полистирольного шарика диаметром почти 40 микрон, покрытого золотой пленкой, с зафиксированной кремниевой пластиной (см. рис. 2), а затем взаимодействие того же шарика с золотой пластиной.

Пространство между шариком и пластиной заполнялось жидкостью — бромбензолом . Перемещение шарика, прикрепленного к кантилеверу атомно-силового микроскопа, контролировалось с помощью системы из суперлюминесцентного диода («почти что» лазер) и специального детектора (см. рис. 3).

Необычность такого набора веществ объясняется тем, что целью авторов исследования было наблюдение именно отталкивания тел, а для этого необходимо было подобрать диэлектрические проницаемости таким образом, чтобы выражение -(ε 1 - ε 3)(ε 2 - ε 3) было больше нуля. Ну а упомянутое выше золотое напыление на шарик необходимо для наблюдения «обычного» эффекта Казимира: когда ε 1 = ε 2 и соотношение диэлектрических проницаемостей становится положительным, шарик притягивается к плоскости.

Результаты измерений силы Казимира-Лифшица, действующей в системе «шарик — кремниевая пластина» и «шарик — золотая пластина», показаны на рис. 4. Изменение силы отталкивания между золотым шариком и кремниевой пластиной показано на рис. 4a синей кривой, а изменение силы притяжения между тем же шариком, но уже золотой пластиной, — желтой кривой.

Как и ожидалось, проведенные измерения силы Казимира-Лифшица в пределах погрешностей согласуются с теорией: сила притяжения, как и сила отталкивания, быстро убывает с увеличением расстояния между телами. Это отражено в виде графиков на рис. 4b и 4c, на которых набор экспериментальных данных показан синими и желтыми квадратиками и кругами, равномерно распределенными по обе стороны от соответственно сплошных линий такого же цвета, рассчитанных согласно теории Казимира-Лифшица.

Может возникнуть вопрос, почему измерения проводились не для двух параллельных плоскостей? Дело в том, что сделать две большие плоскости на нанометровых расстояниях параллельными технологически сложно.

В процессе измерения силы Казимира-Лифшица между шариком и плоскостью экспериментаторы столкнулись с еще одной проблемой. Система не является статической, поскольку вследствие отталкивания или притяжения шарик движется в жидкости с некоторой скоростью, а значит, неизбежно возникнет сила вязкого трения, направленная в противоположную сторону от направления перемещения шарика и пропорциональная скорости его движения. Получается, что сила вязкого трения препятствует «чистому» измерению эффекта Казимира-Лифшица, поэтому необходимо понять, насколько значительное возмущение оказывает вязкость на эксперимент, а после этого откалибровать саму экспериментальную установку с учетом силы вязкости.

Авторы ссылаются на свою предыдущую работу Precision measurement of the Casimir-Lifshitz force in a fluid (в открытом доступе статью можно посмотреть , PDF, 163 Кб) в журнале Physical Review A , в которой проводились подобные измерения, только в качестве жидкости, заполнявшей пространство между золотым шариком и золотой плоскостью (то есть ε 1 = ε 2 , а значит, измерялась только сила притяжения), был этанол, чья вязкость практически такая же, как и у бромбензола. В этих экспериментах ученые выяснили, что при скорости движения шарика 45 нм/с в этаноле сила вязкости составляла 12 пиконьютонов (пико = 10 -12).

Как видно из графиков на рис. 4, сила отталкивания между телами может достигать 150 пН, а потому какого-либо влияния вязкость жидкости при конструировании вышеупомянутых нано- и микромеханических устройств оказывать не должна. Сила Казимира-Лифшица на очень близких расстояниях просто на порядок больше силы вязкого трения.

Таким образом, эксперимент по измерению эффекта Казимира-Лифшица указывает на то, что, разделив два объекта на расстояниях порядка 10-100 нм специально подобранной жидкостью, возможно наблюдать зависание, или левитацию одного из них над другим (см. рис. 1). Возможно, что в недалекой перспективе это позволит создавать нано- и микромеханизмы с очень малой силой трения и отсутствием «слипания» между деталями таких устройств.

Если обе частицы обладают Полями Отталкивания и их величина одинакова, то обе они будут одновременно и отталкивающими, и отталкиваемыми. И обе будут отдаляться друг от друга с одинаковой скоростью.

МЕХАНИЗМ АНТИГРАВИТАЦИИ (ОТТАЛКИВАНИЯ)

Частица с Полем Притяжения – причина возникновения в окружающих ее частицах Силы Притяжения. А как же быть с частицами, формирующими в эфирном поле Поля Отталкивания? Они ведь не вызывают Силы Притяжения. Нет, любая частица с Полем Отталкивания – причина возникновения в окружающих ее частицах Силы Отталкивания.

Сила Отталкивания , возникающая в какой-либо частице – это эфирный поток, заставляющий Эфир частицы отдаляться от возникающего в эфирном поле избытка Эфира. Избыток Эфира всегда формируется частицей с Полем Отталкивания.

В разделе физики, посвященном электромагнетизму, Силы Отталкивания существуют наравне с Силами Притяжения. Однако в электромагнетизме отталкиваются и притягиваются не тела, а заряженные частицы, т.е. не существует связи с гравитацией. А ведь если бы антигравитация (отталкивание) была бы признана учеными, и не просто признана, а в качестве антипода гравитации, все стало бы на свои места. Электромагнетизм предстал бы в сознании ученых не чем иным, как гравитационно-антигравитационным взаимодействием . А положительный и отрицательный заряды превратились бы в массу и антимассу. И все. Так был бы сделан первый шаг в направлении «Великого Объединения» четырех взаимодействий .

В реальных условиях источник Поля Отталкивания (частица, химический элемент или скопление химических элементов) может заслоняться свободными частицами или химическими элементами (телами, средами). Поля Притяжения и Поля Отталкивания экранирующих объектов изменяют величину Силы Отталкивания в исследуемом объекте.

Заслоняющие частицы с Полями Отталкивания сами являются причинами Сил Отталкивания. И эти Силы Отталкивания следует суммировать с Силой Отталкивания того объекта, влияние которого мы исследуем.

Экранирующие частицы с Полями Притяжения являются причинами Сил Притяжения. И эти Силы Притяжения следует вычесть из Силы Отталкивания, которую мы исследуем.

Теперь несколько слов об особенностях отталкивания частиц с разной величиной Полей Отталкивания.

Если обе взаимодействующие частицы имеют Поля Отталкивания, причем разной величины, тогда отталкивающей будет частица с большим Полем, а отталкиваемой – частица с меньшим Полем. Т.е. частица с меньшим Полем Отталкивания будет отдаляться от частицы с большим Полем, а не наоборот. Пусть это будет называться Правилом Подчинения Доминантной Силе Отталкивания.



В том случае, если только одна из частиц имеет Поле Отталкивания, а вторая характеризуется Полем Притяжения, тогда отталкивающей будет только частица Ян . Инь всегда будет только отталкиваемой.

Как вы видите, все по аналогии с Силой Притяжения, только наоборот.

Механизм антигравитации (отталкивания) полностью противоположен механизму гравитации (притяжения).

Одна из двух частиц, участвующих в антигравитационном взаимодействии, обязательно должна иметь Поле Отталкивания. В противном случае уже нельзя вести речь об антигравитационном взаимодействии.

Мы сравнивали процесс притяжения со сматыванием «клубка». Если провести аналогию с механизмом гравитации, тогда процесс отталкивания – это разматывание «клубка». Частица с Полем Отталкивания – это «клубок». Испускание ею Эфира – это разматывание «нити» (Эфира). Частица с Полем Отталкивания, разматывая «нить» (испуская Эфир), увеличивает расстояние между собой и окружающими частицами, т.е. отталкивает, отдаляет их от себя. При этом Эфир в частицах с Полями Отталкивания не иссякает. Частицы не прекращают его испускать.

Из двух частиц, участвующих в процессе антигравитации, та, что обладает Полем Отталкивания, будет отталкивающей. А вторая частица, соответственно, будет отталкиваемой. Отталкиваемой может быть частица любого качества – как с Полем Отталкивания, так и с Полем Притяжения. В том случае, если обе частицы обладают Полями Отталкивания, каждая из них будет одновременно играть роль как отталкивающей, так и отталкиваемой.

Механизм отталкивания основан на втором принципе Закона действия Сил – «Природа не терпит избытка ». Эфир, заполняющий силовой центр частицы, а вместе с ним и сам силовой центр частицы отдаляются от избытка Эфира, возникающего в том месте эфирного поля, где располагается объект, обладающий Полем Отталкивания, т.е. тот, у которого количество творимого Эфира преобладает над количеством исчезающего.

Эфирный поток, заставляющий Эфир отталкиваемой частицы отдаляться от избытка Эфира, т.е. от объекта с Полем Отталкивания, называется «Силой Отталкивания ».

Естественно, что в отличие от процесса притяжения никакой связи между отталкивающимися частицами не образуется. Напротив, ни о какой связи между частицами здесь не может быть и речи. Допустим, две частицы были гравитационно связаны. Но в результате трансформации одна из них или сразу обе поменяли Поле Притяжения на Поле Отталкивания. Сразу же вступает в действие механизм антигравитации, и частицы отталкиваются друг от друга, т.е. связь разрывается.

Величина Силы Отталкивания зависит от тех же трех факторов, что и величина Силы Притяжения:

1)от величины Поля Отталкивания частицы (химического элемента или тела), служащей причиной Силы Отталкивания;

2)от расстояния между источником Поля Отталкивания и исследуемой частицей;

3)от качества отталкиваемой частицы.

Давайте рассмотрим влияние всех этих факторов.

1)Величина Поля Отталкивания объекта – причины Силы Отталкивания.

Величина Поля Отталкивания частицы – это скорость поглощения Эфира ее поверхностью. Соответственно, чем с большей скоростью поглощает частица Эфир, тем больше будет величина Силы Отталкивания, вызываемой этой частицей в исследуемой частице.

2)Расстояние между источником Поля Отталкивания и исследуемой частицей.

Объяснение зависимости величины Силы Отталкивания от расстояния аналогично описанию причины, по которой зависит от расстояния Сила Притяжения.

Элементарная частица – это сфера, и если отдаляться от нее, то объем пространства, окружающего частицу, будет концентрически возрастать. Соответственно, чем дальше от частицы, тем больше становится объем Эфира, окружающего частицу. Каждая частица с Полем Отталкивания испускает Эфир в окружающее эфирное поле с определенной скоростью. Скорость испускания частицей Эфира – это и есть изначально присущая этой частице величина Поля Отталкивания. Однако чем дальше от частицы, тем больший объем Эфира ее будет окружать. Соответственно, чем дальше от частицы, тем меньше будет скорость, с которой Эфир будет отдаляться от данной частицы (т.е. тем меньше будет скорость эфирного потока) – т.е. тем меньше будет величина Поля Отталкивания. Таким образом, мы говорим, во-первых, об изначально присущей частице величине Поля Отталкивания, а во-вторых, о величине Поля Отталкивания на определенном расстоянии от частицы.

Жидкость Леннард-Джонса между двумя инертными стенками, а - Зависимость приведенной плотности от расстояния между стенками для трех значений приведенной температуры. б - Усиление притяжения вследствие понижения плотности. В подходе Гамакера при расчете притяжения ^ham плотность в зазоре принимается постоянной и равной объемной плотности

Осцилляторные силы обнаруживаются также в среде линейных алканов, но они не проявляются в среде разветвленных алканов. Подобные силы зарегистрированы между поверхностями слюды в водных растворах, но в этом случае обнаружен более короткий период осцилляции по сравнению с ОМЦТС, что объясняется разницей молекулярных размеров воды и ОМЦТС.

Гидратные силы отталкивания

Легко представить, что заряженная поверхность или поверхность, несущая противоположные заряды, при погружении в водный раствор будет связывать один или несколько слоев молекул воды, гидратирующих поверхность таким же образом, как растворенный ион формирует гидратную оболочку. Приведение таких поверхностей в контакт вызывает их дегидратацию. Можно предположить, что в результате возникают гидратные силы отталкивания.

Осцилляторные силы между поверхностями слюды в инертной силиконовой жидкости, диаметр молекул ОМЦТС составляет ~9 A

Силы, действующие между поверхностями слюды в среде линейного и разветвленного алканов

Было обнаружено очень сильное, короткодействующее взаимодействие между липидными бислоями. Расстояния, на которых проявляется это взаимодействие, лежат в диапазоне 10-30 А. Отталкивание экспоненциально уменьшается с увеличением расстояния между липидным монослоями. Для измерения соответствующей силы была использована методика, основанная на измерении осмотического давления. Аналогичным образом методом измерения поверхностных сил с помощью специального прибора были измерены силы отталкивания между поверхностями слюды. Гидратные силы отталкивания, по-видимому, действуют как между нейтральными, так и между заряженными поверхностями. Несмотря на то что поверхности слюды жесткие, а би-слойные структуры - гибкие, оба исследования дали удивительно хорошо согласующиеся результаты. Отталкивание между поверхностями слюды наблюдалось и в других жидких средах.

Проведенные эксперименты привели к интенсивным поискам теоретической интерпретации результатов. Одной из причин отталкивания предложено считать структурную поляризацию или поляризацию водородных связей на поверхности. В случае липидных бислоев механизм отталкивания может быть обусловлен возможностью волнообразных деформаций и взаимодействием отображения заряда. Недавно было высказано предположение, что липиды "выдавливаются" в растворитель; при сближении поверхностей возможность образования выступов уменьшается, что приводит к появлению отталкивания. Этот механизм близок к идее отталкивания из-за волнистости. Разница заключается главным образом в масштабе флуктуации. Исходная модель основана на "волнистости" с большой длиной волны, тогда как модель "выступов" справедлива на расстояниях, сопоставимых с молекулярными размерами.

Гидратные силы отталкивания между поверхностями слюды в растворе электролита. Следует отметить, что отталкивание возникает только при концентрации соли > 1мМ.

Моделирование методом Монте-Карло обнаружило короткодействующие силы отталкивания даже для идеально гладких поверхностей. Необходимо сказать, что как гидратные силы отталкивания, так и гидрофобное притяжение, которое описано ниже, можно достаточно просто моделировать, варьируя силу взаимодействия между растворителем и поверхностью. Сильное притяжение растворитель-поверхность автоматически приводит к появлению силы отталкивания поверхность-поверхность. Если поверхности инертны, т.е. нет сил притяжения между поверхностью и растворителем, то между поверхностями действует сольватационное притяжение. В обоих случаях взаимодействие ограничено расстояниями менее 100 А.

Гидратные силы отталкивания и гидрофобное притяжение для смачиваемой и несмачиваемой стенок соответственно. Теоретические данные получены из обобщенной теории Ван дер Ваальса

Гидрофобное притяжение

Накоплено множество результатов измерений силы, действующей между гидрофобными поверхностями. Обычно для исследований используют поверхности слюды, модифицированные монослоями углеводородных или фторированных групп, обращенных к воде. Эти исследования привели к неожиданному результату: было обнаружено, что между такими поверхностями сила притяжения действует на больших расстояниях. Притяжение распространяется на сотни ангстрем. При этом притяжение нельзя объяснить силами Ван дер Ваальса в рамках подхода Гамакера. Кроме того, на него практически не влияют добавки солей. Экспериментально наблюдаемое дальнодействие невозможно объяснить аналогично тому же типу гидрофобного взаимодействия, с которым мы встречались, например, при взаимодействии двух атомов неона в воде. Хотя принято считать, что "обычное" гидрофобное взаимодействие проявляется только на близких расстояниях, реально его величина может увеличиваться по механизму уменьшения плотности.

Считается, что гидрофобное притяжение ответственно за быструю коагуляцию гидрофобных частиц в воде и играет важную роль в фолдинге белков. Однако, как и в случае гидратных сил отталкивания, теоретические разработки гидрофобных взаимодействий практически отсутствуют. Одним из возможных механизмов, способных обеспечить притяжение, может быть образование полостей, т.е. маленьких пузырьков газа, на гидрофобизованной поверхности слюды. В зависимости от условий такая кавитация вызывает увеличение силы отталкивания или притяжения. Другая возможная причина притяжения между гидрофобизованными поверхностями заключается в том, что поверхности локально не нейтральны и корреляция между положительно и отрицательно заряженными участками вызывает притяжение.

Силы деплеции

Для кристаллизации белков обычно используют полиэтиленоксид. Считается, что ПЭО вызывает силу деплеции между макромолекулами белка. Другими словами, ПЭО не может проникать в пространство между молекулами белка из-за очень сильного ограничения конформационной свободы полимерных цепей ПЭО. Накапливаясь в растворе, ПЭО создает осмотическое давление, действующее на молекулы белка. Это очень интересный механизм, в том смысле, что вводимый полимер влияет на взаимодействие между коллоидными частицами, не находясь между ними! Диапазон сил притяжения деплеции по порядку величины совпадает с радиусом инерции полимерной молекулы. Для идеального полимера радиус инерции равен г1/2, где r - степень полимеризации.

Иногда на больших расстояниях до проявления сил притяжения деплеции появляются силы отталкивания. Это явление часто называют деплеционным отталкиванием. И притяжение, и отталкивание этой природы наблюдались экспериментально и описаны теоретически.

error: