Тригонометрические уравнения — формулы, решения, примеры. Методы решения тригонометрических уравнений Переход к половинному углу

Основными методами решения тригонометрических уравнений являются: сведение уравнений к простейшим (с использованием тригонометрических формул), введение новых переменных, разложение на множители. Рассмотрим их применение на примерах. Обратите внимание на оформление записи решений тригонометрических уравнений.

Необходимым условием успешного решения тригонометрических уравнений является знание тригонометрических формул (тема 13 работы 6).

Примеры.

1. Уравнения, сводящиеся к простейшим.

1) Решить уравнение

Решение:

Ответ:

2) Найти корни уравнения

(sinx + cosx) 2 = 1 – sinxcosx, принадлежащие отрезку .

Решение:

Ответ:

2. Уравнения, сводящиеся к квадратным.

1) Решить уравнение 2 sin 2 x – cosx –1 = 0.

Решение: Используя формулу sin 2 x = 1 – cos 2 x, получаем

Ответ:

2) Решить уравнение cos 2x = 1 + 4 cosx.

Решение: Используя формулу cos 2x = 2 cos 2 x – 1, получаем

Ответ:

3) Решить уравнение tgx – 2ctgx + 1 = 0

Решение:

Ответ:

3. Однородные уравнения

1) Решить уравнение 2sinx – 3cosx = 0

Решение: Пусть cosx = 0, тогда 2sinx = 0 и sinx = 0 – противоречие с тем, что sin 2 x + cos 2 x = 1. Значит cosx ≠ 0 и можно поделить уравнение на cosx. Получим

Ответ:

2) Решить уравнение 1 + 7 cos 2 x = 3 sin 2x

Решение:

Используем формулы 1 = sin 2 x + cos 2 x и sin 2x = 2 sinxcosx, получим

sin 2 x + cos 2 x + 7cos 2 x = 6sinxcosx
sin 2 x – 6sinxcosx+ 8cos 2 x = 0

Пусть cosx = 0, тогда sin 2 x = 0 и sinx = 0 – противоречие с тем, что sin 2 x + cos 2 x = 1.
Значит cosx ≠ 0 и можно поделить уравнение на cos 2 x. Получим

tg 2 x – 6 tgx + 8 = 0
Обозначим tgx = y
y 2 – 6 y + 8 = 0
y 1 = 4; y 2 = 2
а) tgx = 4, x= arctg4 + 2 k , k
б) tgx = 2, x= arctg2 + 2 k , k .

Ответ: arctg4 + 2 k , arctg2 + 2 k, k

4. Уравнения вида a sinx + b cosx = с, с ≠ 0.

1) Решить уравнение .

Решение:

Ответ:

5. Уравнения, решаемые разложением на множители.

1) Решить уравнение sin2x – sinx = 0.

Корнем уравнения f ( х ) = φ ( х ) может служить только число 0. Проверим это:

cos 0 = 0 + 1 – равенство верно.

Число 0 единственный корень данного уравнения.

Ответ: 0.

Методы решения тригонометрических уравнений Содержание

  • Метод замены переменной
  • Метод разложения на множители
  • Однородные тригонометрические уравнения
  • С помощью тригонометрических формул:
  • Формул сложения
  • Формул приведения
  • Формул двойного аргумента
Метод замены переменной

С помощью замены t = sinx или t = cosx, где t ∈ [−1;1] решение исходного уравнения сводится к решению квадратного или другого алгебраического уравнения.

См. примеры 1 – 3

Иногда используют универсальную тригонометрическую подстановку: t = tg

Пример 1 Пример 2 Пример 3 Метод разложения на множители

Суть этого метода заключается в том, что произведение нескольких множителей равно нулю, если хотя бы один из них равен нулю, а другие при этом не теряют смысл:

f(x) · g(x) · h(x) · … = 0 f(x) = 0 или g(x) = 0 или h(x) = 0

и т.д. при условии существования каждого из сомножителей

См. примеры 4 – 5

Пример 4 Пример 5 Однородные тригонометрические уравнения Уравнение вида a sin x + b cos x = 0 называют однородным тригонометрическим уравнением первой степени.

a sin x + b cos x = 0

Замечание.

Деление на cos x допустимо, поскольку решения уравнения cos x = 0 не являются решениями уравнения a sin x + b cos x = 0.

a sin x b cos x 0

a tg x + b = 0

tg x = –

Однородные тригонометрические уравнения

a sin2x + b sin x cos x + c cos2x = 0

Уравнение вида a sin2x + b sin x cos x + c cos2x = 0 называют однородным тригонометрическим уравнением второй степени.

a tg2x + b tg x + c = 0

a sin2x b sin x cos x c cos2x 0

Замечание. Если в данном уравнении а = 0 или с = 0 то, уравнение решается методом разложения

на множители.

Пример 6

Пример 8 Пример 9 Пример 10 Пример 11 1. Формулы сложения:

sin (x + y) = sinx cosy + cosx siny

cos (x + y) = cosx cosy − sinx siny

tgx + tgy

tg (x + y) =

1 − tgx tgy

sin (x − y) = sinx cosy + cosx siny

cos (x − y) = cosx cosy + sinx siny

tgx − tgy

tg (x − y) =

1 + tgx tgy

сtgx сtgy − 1

сtg (x + y) =

сtgу + с tgх

сtgx сtgy + 1

сtg (x − y) =

сtgу − с tgх

Пример 12 Пример 13 С помощью тригонометрических формул 2. Формулы приведения:

Лошадиное правило

В старые добрые времена жил рассеянный математик, который при поиске ответа менять или не менять название функции (синус на косинус ), смотрел на свою умную лошадь, а она кивала головой вдоль той оси координат, которой принадлежала точка, соответствующая первому слагаемому аргумента π/ 2 + α или π + α .

Если лошадь кивала головой вдоль оси ОУ , то математик считал, что получен ответ «да, менять» , если вдоль оси ОХ , то «нет, не менять» .

С помощью тригонометрических формул 3. Формулы двойного аргумента:

sin 2x = 2sinx cosx

cos 2x = cos2x – sin2x

cos 2x = 2cos2x – 1

cos 2x = 1 – 2sin2x

1 – tg2x

ctg 2x =

ctg2x – 1

Пример 14 С помощью тригонометрических формул 4. Формулы понижения степени:

5. Формулы половинного угла:

С помощью тригонометрических формул 6. Формулы суммы и разности: С помощью тригонометрических формул 7. Формулы произведения: Мнемоническое правило “Тригонометрия на ладони”

Очень часто требуется знать наизусть значения cos , sin , tg , ctg для углов 0°, 30°, 45°, 60°, 90°.

Но если вдруг какое-либо значение забудется, то можно воспользоваться правилом руки.

Правило: Если провести линии через мизинец и большой палец,

то они пересекутся в точке, называемой “лунный бугор”.

Образуется угол 90°. Линия мизинца образует угол 0°.

Проведя лучи из “лунного бугра” через безымянный, средний, указательный пальцы, получаем углы соответственно 30°, 45°, 60°.

Подставляя вместо n : 0, 1, 2, 3, 4, получаем значения sin , для углов 0°, 30°, 45°, 60°, 90°.

Для cos отсчет происходит в обратном порядке.

Тема: «Методы решения тригонометрических уравнений».

Цели урока:

образовательные:

Сформировать навыки различать виды тригонометрических уравнений;

Углубление понимания методов решения тригонометрических уравнений;

воспитательные:

Воспитание познавательного интереса к учебному процессу;

Формирование умения анализировать поставленную задачу;

развивающие:

Формировать навык проводить анализ ситуации с последующим выбором наиболее рационального выхода из нее.

Оборудование: плакат с основными тригонометрическими формулами, компьютер, проектор, экран.

Начнем урок с повторения основного приема решения любого уравнения: сведение его к стандартному виду. Путем преобразований линейные уравнения сводят к виду ах = в, квадратные – к виду ax 2 + bx + c =0. В случае тригонометрических уравнений необходимо свести их к простейшим, вида: sinx = a , cosx = a , tgx = a , которые легко можно решить.

В первую очередь, конечно, для этого необходимо использовать основные тригонометрические формулы, которые представлены на плакате: формулы сложения, формулы двойного угла, понижения кратности уравнения. Мы уже умеем решать такие уравнения. Повторим некоторые из них:

Вместе с тем существуют уравнения, решение которых требует знаний некоторых специальных приемов.

Темой нашего урока является рассмотрение этих приемов и систематизация методов решения тригонометрических уравнений.

Методы решения тригонометрических уравнений.

1. Преобразование к квадратному уравнению относительно какой-либо тригонометрической функции с последующей заменой переменной.

Рассмотрим каждый из перечисленных методов на примерах, но более подробно остановимся на двух последних, так как два первых мы уже использовали при решении уравнений.

1. Преобразование к квадратному уравнению относительно какой-либо тригонометрической функции.

2. Решение уравнений методом разложения на множители.

3. Решение однородных уравнений.

Однородными уравнениями первой и второй степени называются уравнения вида:

соответственно (а ≠ 0, b ≠ 0, с ≠ 0).

При решении однородных уравнений почленно делят обе части уравнения на cosx для (1) уравнения и на cos 2 x для (2). Такое деление возможно, так как sinx и cosx не равны нулю одновременно – они обращаются в нуль в разных точках. Рассмотрим примеры решения однородных уравнений первой и второй степени.

Запомним это уравнение: при рассмотрении следующего метода – введение вспомогательного аргумента, решим его другим способом.


4. Введение вспомогательного аргумента.

Рассмотрим уже решенное предыдущим методом уравнение:

Как видим, получается тот же результат.

Рассмотрим еще один пример:

В рассмотренных примерах было, в общем, понятно, на что требуется разделить исходное уравнение, чтобы ввести вспомогательный аргумент. Но может случиться, что не очевидно, какой делитель выбрать. Для этого существует специальная методика, которую мы сейчас и рассмотрим в общем виде. Пусть дано уравнение.

error: